Central Iowa Expo Pavement Test Sections: Pavement and Foundation Construction Testing and Performance Monitoring

Project Details
STATE

IA

SOURCE

TRID

START DATE

07/01/12

END DATE

02/01/18

RESEARCHERS

David White, Pavana Vennapusa, Peter Becker, Jesus Rodriguez, Yang Zhang, and Christianna White

SPONSORS

Iowa Highway Research Board, Iowa Department of Transportation, and FHWA

KEYWORDS

chemical stabilized samples, determine compaction characteristics, Foundation Stabilization options - testing, Freeze thaw durability, soils, unconfined compressive strength

LINKS

Link

Products

Project description

The Iowa Department of Transportation (DOT) initiated a research project to build the pavement foundation layer (Phase I), construction of the pavement layers (Phase II), and performance monitoring of the pavement systems (Phase III). During Phase I, 16 test sections were constructed, that used woven and non-woven geotextiles and geogrids at subgrade/subbase interfaces; 4 in. and 6 in. geocells in the subbase layer + non-woven geosynthetics at subgrade/subbase interfaces; portland cement (PC) and fly ash stabilization of subgrades; PC stabilization of recycled subbase; PC + fiber stabilization of recycled subbase with polypropylene fibers and monofilament-polypropylene fibers; mechanical stabilization (mixing subgrade with existing subbase); and high-energy impact compaction. A series of laboratory tests were conducted to characterize the soils, determine compaction characteristics, unconfined compressive strength tests on chemical stabilized samples, and freeze-thaw durability. In situ strength and stiffness-based test measurements were performed during construction (in July 2012), about three months after construction (in October 2012), seven months after construction (in January 2012) during frozen condition, and about nine to ten months after construction (in April/May 2013) during spring-thaw. This project generated significant information regarding the mechanistic properties for pavement foundation support for a range of foundation improvement/stabilization methods. The test sections at this facility are unique in terms of the range of technologies used and for the fact that the performance data particularly isolates the influence of the seasonal changes without any loading. Some significant lessons learned from this project and the limitations of the findings are identified in this report.
TOP