Characterizing the Behavior of a Machine-Placed UHPC Bridge Deck Overlay TR-748

Project Details









Goetz, Vanessa; Sritharan, Sri


Iowa Highway Research Board, Iowa Department of Transportation


Bridge decks; Durability; Overlays (Pavements); Pavement design; Thickness; Ultra high performance concrete; Bridges and other structures; Design; Highways; Materials; Pavements

Project description

Bridge deck deterioration is a frequent problem faced by many states in the U.S., especially the Midwest and Northern states where deicing is used and Coastal states. Maintenance and repair associated with bridge decks can cost 50 to 80% of all bridge related expenditures, which is conservatively estimated to be more than $5B per year (Gucunski et al. 2011). Using bridges from Iowa, Gucunski et al. demonstrated typical bridge deck deterioration's include cracking, spalling, delamination, and corrosion of reinforcement (Fig. 1 ). Various phenomena contribute to deck deterioration, including poor initial quality, the use of deicing salts in winter, overloading, stresses associated with freeze-thaw cycles, fatigue, corrosion of reinforcement, or any combination thereof. Near the coast, the bridge decks can experience damage due to seawater salt. Several of these problems initiate due to surface cracking and infiltration of moisture and chloride into the deck. A variety of techniques have been used to repair damaged bridge decks. They can range from grouting to seal surface cracks to partial/full depth patching to replacing partial/full bridge deck. While each of these techniques can increase the service life of the bridge decks, none has been proven to completely prevent further bridge deck deterioration nor do they increase the longevity of bridge decks. With its superior durability properties, the use of ultra-high performance concrete with fiber reinforcement (UHPC) in bridge deck has been explored in Iowa as a means to combat wide-ranging bridge deck deterioration problems.