Detection of Flaws in Asphalt Overlaid Concrete Decks Using Ultrasonic Guided Waves

Project Details
STATE

NE

SOURCE

RIP

START DATE

07/31/19

END DATE

12/31/20

RESEARCHERS

Unviersity of Nebraska, Lincoln

SPONSORS

Nebraska Department of Transportation

KEYWORDS

Bridge decks, Inspection equipment

Project description

Background The research proposed here builds on the achievements of a previous NOOT project. The novel, nondestructive ultrasonic guided wave leakage (UGWL) based testing method we developed recently promises to be able to detect the onset of corrosion and delamination in reinforced concrete bridge decks earlier than any other nondestructive testing (NDT) method (Garcia, Erdogmus, et al. 2017 and 2019); however, the effects of asphalt overlay on the method's effectiveness remains unclear. With this project, we aim to investigate the effect of asphalt overlays on the feasibility of the recently developed UGWL method. In this section, the background and the motivation for the proposed work are summarized. Reinforced concrete bridge decks are highly susceptible to deterioration, mainly due to corrosion of the rebars and the subsequent propagation of issues, such as delamination, cracking, and spalling. According to the Federal Highway Administration (FHWA 2014), 145,890 out of the 610,749 highway bridges (24%) in the U.S. are structurally deficient. Yunovich et al. (2001) state that corrosion and delamination problems account for approximately 40% of all bridge deck repair costs; and Arndt et al. (2011) identify the highway bridge corrosion related repair costs to be around $8.3 billion, with $2 billion of this just for the repair of bridge decks.
TOP