Evaluation of Geosynthetics Use in Pavement Foundation Layers and Their Effects on Design Methods

Project Details









Issam I A Qamhia, Erol Tutumluer


Illinois Department of Transportation


Base course (Pavements), Geosynthetics, Pavement design, Specifications, Subgrade (Pavements)

Project description

This report presents findings of a research effort aimed at reviewing and updating existing Illinois Department of Transportation (IDOT) specifications and manuals regarding the use of geosynthetic materials in pavements. The project consisted of three tasks: evaluate current IDOT practice related to the use of geosynthetics; review research and state of the practice on geosynthetics applications, available products, design methods, and specifications; and propose recommendations for geosynthetic solutions in pavements to modernize IDOT’s practices and manuals. The review of IDOT specifications revealed that geotextiles are the most used geosynthetic product in Illinois, followed by geogrids. Several of IDOT’s manuals have comprehensive guidelines to properly design and construct pavements with geosynthetics, but several knowledge gaps and potential areas for modernization and adoption of new specifications still exist. Based on the review of the available design methods and the most relevant geosynthetic properties and characterization methods linked to field performance, several updates to IDOT’s practice were proposed. Areas of improvement are listed as follows. First, establish proper mechanisms for using geogrids, geocells, and geotextiles in subgrade restraint and base stabilization applications. This includes using shear wave transducers, i.e., bender elements, to quantify local stiffness enhancements and adopting the Giroud and Han design method for subgrade restraint applications. Second, update IDOT’s Subgrade Stability Manual to include property requirements for geogrids, geotextiles, and geocells suitable for subgrade restraint applications. Third, establish proper standards on stabilization, separation, and pumping resistance for geotextiles by incorporating recent research findings on geotextile clogging and permeability criteria. Fourth, promote the use of modern geosynthetic products, such as geotextiles with enhanced lateral drainage, and fifth, elaborate on proper methods for construction/quality control measures for pavements with geosynthetics.