Optimal Approach for Addressing Reinforcement Corrosion for Concrete Bridge Decks in Illinois: Phase II

Project Details
STATE

IL

SOURCE

TRID

START DATE

05/16/22

END DATE

05/15/23

RESEARCHERS

Matthew J. Gombeda, Zoe N. Lallas, Estevan River Jr.

SPONSORS

Illinois DOT

KEYWORDS

Bridge decks, Corrosion resistance, Life cycle costing, Literature reviews, Reinforced concrete, Reinforcing bars

LINKS

Link

Product

Project description

This report presents the expansion of a previously introduced life-cycle cost calculation framework for concrete bridge decks in Illinois. In addition to the alternative reinforcement options examined in the Illinois Center for Transportation and Illinois Department of Transportation project R27-SP49, two additional reinforcing bar types—stainless steel–clad carbon core and textured epoxy-coated bars—are the main subjects of this study. The results of a comprehensive literature review of these two additional bar options will highlight their cost-benefit characteristics toward optimizing the life span of a concrete bridge deck, most notably trade-offs between often increased upfront material costs and enhanced durability over a design 100-year service life. Additionally, the scope of this study includes the development of a more robust methodology to account for the effect of the relatively high nominal yield strength and corresponding reduced ductility of A1035 bars, one of the alternate reinforcement options examined in R27-SP49. The researchers used a numerical moment-curvature-based analysis methodology to facilitate the development of a design-friendly modified high-strength reinforcement factor that supersedes the nominal yield strength factor proposed in the original version of the life-cycle cost framework. The outcomes of this project and R27-SP49 will collectively expand upon and aim to enhance the effectiveness of the originally proposed life-cycle cost framework. The outcomes will be demonstrated by presenting updated life-cycle costs and via a parametric study of two hypothetical bridge deck examples, each falling into significantly different categories for traffic demands and select performance expectations.
TOP