Project Details
RESEARCHERS
Kamal H. Khayat; Weina Meng; Mahdi Valipour; Matthew Hopkins
SPONSORS
Missouri Department of Transportation (SPR) Construction and Materials Division, through the Missouri University of Science and Technology
KEYWORDS
Compressive strength, Dry shrinkage, Internal curing, LWS
Project description
The goal of this project was to develop an effective methodology to use saturated lightweight sand (LWS) for internal curing to enhance concrete performance and prolong service life of concrete structures. High-performance concrete (HPC) mixtures approved by MoDOT for pavement and bridge deck structures were used for the baseline mixtures. Five different types of saturated LWS employed at various contents were investigated to evaluate the optimum dosage of LWS and maximize its effectiveness on enhancing concrete performance. The content of LWS was varied to ensure the introduction of internal curing water that can secure up to 150% of the water consumed by chemical shrinkage during cement hydration (As per ASTM C1761). Performance improvement from the LWS focused mainly on reducing autogenous and drying shrinkage and the resulting cracking potential without sacrificing durability and cost competence. Proper combinations of internal and external curing were found to enhance shrinkage mitigation. Under 7 days of initial moisture curing, HPC made with the LWS3 resulted in the lowest overall shrinkage. The Bridge-LWS2-150% exhibited the best performance in mitigating autogenous shrinkage where the concrete maintained 160 micro-strain of expansion even after 175 days of age. The lowest drying shrinkage was obtained with the BridgeLWS3-50% mixture (340 micro-strain) at 175 days subjected to 28 days of moist curing. For the paving HPC, the lowest drying shrinkage at 155 days was obtained with the Paving-LWS3-150% mixture (265 micro-strain) subjected to 28 days of moist curing. Concrete proportioned with the LWS2 expanded shale LWS exhibited the best compressive strength, regardless of the curing regime. For the paving HPC, the lowest drying shrinkage at 155 days was obtained with the Paving-LWS3-150% mixture (265 micro-strain) subjected to 28 days of moist curing.